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On the number of square-cell configurations 
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Summary. The numbers of simply and multiply connected square-cell configura- 
tions are computed. The computation is based on the original algorithm for 
constructive enumeration of animals which is founded on the DAST (dualist 
angle-restricted spanning tree) code. 
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1. Introduction 

Recently in this journal Harary and Mezey [ 1] reported a study on similarity and 
complexity of shapes of square-cell configurations. Another name for these 
configurations is square animals [e.g., 2]. A square animal is made up of squares 
which are simply or multiply connected [3, 4]. It starts with a single square and 
grows by adding squares one at a time in such a way that the new square has at 
least one side in contact with a side of a square already present in the animal. 
Square animals are simply connected if they have no holes, whilst multiply 
connected square animals are configurations with holes (Harary and Palmer [2] 
called them holey animals). The smallest hole is of the size of the square. In Fig. 
1 we give as examples a simply connected square animal with 8 squares and a 
multiply connected square animal with 10 squares. 

Statistical properties of square animals and their embeddings in square 
lattices are important in modelling a variety of physical problems such as the 
thermodynamic properties of polymers in dilute solution [5-9] and for character- 
izing shapes of two-dimensional solids and molecular aggregates on the surfaces 
of catalysts [e.g. 10]. 

I 
B 

A 

Fig. 1. A simply connected square animal with 8 cells 
(A) and multiply connected square animal with 10 cells 
(B) 
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The problem is to find the number of  different square animals with n-squares 
[2, 11]. Two or more square-cell configurations which can be transformed into 
each other by translations, reflections or rotations in the plane are regarded as 
the same animal. This problem of  counting square animals belongs to the 
celebrated, but difficult, cell-growth problem [2, 3, 11, 12] or polyomino problem 
[13-15]. 

The question concerning the exact number of square animals of a given finite 
cell number n is an "old"  problem. It was listed by Harary in 1960 in his article 
on unsolved problems in the enumeration of  graphs [11]. In this article he has 
also given the counting series for the simply connected square animals with up 
to 7 cells: x + x 2 + 2x 3 + 5X 4 "q- 12X 5 + 35x 6 -F 107X 7. A few years later (1964) 
Harary has published in his book on applied combinatorics the counting series 
for the lower simply and multiply connected square animals [16]. Since we are in 
the position to provide the numbers and shapes of animals with a given number 
of cells [17], we will give here the numbers of square animals for larger values of 
n. 

We have recently developed an algorithm for the constructive enumeration of 
hexagonal animals [18], which is based on the DAST (dualist angle-restricted 
spanning tree) code [19, 20]. It appears that the DAST code can be used with a 
slight modification for representing square animals. At this point we mention 
that the constructive enumerations for each finite n can also be accomplished by 
the Hara ry -Mezey  code [1], but we decided to use our code because the 
preliminary results based on it were already available. 

2 Definition of the DAST code for square animals 

The name "polyomino" (generalization of domino for square counts other than 
2) shall in the following stand for planar square animal, i.e. a square-cell 
configuration which describes a finite edge-connected subset on an unbounded 
chessboard. Here edge-connectivity shall be the transitive closure of the "having 
a common edge" neighborship relation for squares. 

We will use - where this distinction is vital - the name "polyomino graph" 
for a polyomino as a system of  vertices and edges, which therefore cannot have 
holes of  the size of a square and "polyomino area" for a polyomino as a system 
of filled squares, which can have a single empty space in the center of  a ring of 
eight squares. Obviously the set of  polyomino graphs can be embedded in the set 
of polyomino areas as a subset by simply filling all possible squares. 

For  a systematic approach we begin by defining an "entered polyomino" 
(P, a, b) as a polyomino P together with an ordered pair (a, b) of  vertices 
adjacent on its boundary. We name this pair the "entrance" of  the entered 
polyomino and the square to which it belongs the "entrance square". We further 
name (P, a, b) a "corner-entered polyomino", i f - w i t h  the obvious coordinate 
system - vertex a has the maximal/minimal value in one coordinate among those 
vertices having the maximal/minimal value in the other coordinate, i.e., i f -  after 
a suitable rotation or reflection of the polyomino - a lies exactly north of  b, no 
other vertex lies so, and no vertex lies further to the west ( "a  being corner" is a 
necessary but not a sufficient condition for this). Evidently there are at most 8 
(non-isomorphic) corner-entered polyominoes for every polyomino (which coor- 
dinate first • minimal or maximal first coordinate • minimal or maximal second) 
and less for symmetric cases. Corner-entered polyominoes are essentially what 
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other authors name fixed polyominoes, and those authors name polyominoes in 
our sense free polyominoes. 

Let (P, a,b) be an entered polyomino and let the vertex sequence 
(a, b, c, d, a) describe a path around the entrance square. According to the 
definition there are only three neighboring squares-  N1, N2, N3- possible be- 
yond the edges different from the entrance edge. This gives rise to a decomposi- 
tion of the polyomino area into at most four disjoint regions: 

Po: the entrance square itself; 

PI: the edge-connectivity component of N~ (if present) after elimination of Po, 
N2 and N3; 

P2: the edge-connectivity component of N2 (if present) after elimination of P0, 
PI, and N3; and 

P3: the edge-connectivity component of N3 (if present) after elimination of P0, 
P1, and P2; 

This decomposition clearly cannot be independent of the ordering of the 
neighbors. So there must be an arbitrary but then fixed convention about this 
ordering. In order to encode the presence or absence of any of the components 
in the three bits of an octal digit there must also be a convention about the 
mapping. We found it most useful to look first between a and d with weight 4, 
then between c and d with weight 1 and lastly between b and c with weight 2 (see 
Fig. 2). This gives at most three smaller entered polyominoes (P~, a, d), (Pz, d, e), 
and (P3, e, b). 

Now we can define the "DAST tuple" of an entered polyomino (with respect 
to the above convention) by induction: The only entered polyomino with one 
square gets 0, the tuple consisting of a single zero, as its DAST tuple (this could 
also be deduced from the induction rule which follows). 

Let the DAST tuples of all entered polyominoes with at most k squares be 
defined, and (P, a, b) be an entered polyomino with k + 1 squares. Then the 
decomposition described above gives rise to at most three smaller entered 
polyominoes which by induction have DAST tuples. We add the weights of the 
neighbors to get a digit from 0 to 7 and append to it the DAST tuples of the 
components (if present) ordered according to the convention. This gives the 
DAST tuple of (P, a, b). 

For a given polyomino we define the "DAST code" as the lexicographic 
minimum of the DAST tuples corresponding to its 8 corner-entered polyomi- 
noes. This definition applies equally to polyomino graphs and to polyomino 
areas, and different polyominoes lead to different codes. A polyomino is com- 
pletely reconstructable from its DAST code. 

Like the n-tuple representation of trees [21] the DAST code is selfterminat- 
ing, i.e., if a well-formed DAST code is hidden by appending digits to the end, 

FIRST (4) 

ENTRANCE~ d 
EDGE bL_~ c 

THIRD (2) 

• SECOND(1) 

Fig. 2. Ordering of directions and their weights (in 
parentheses) 
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1 1 3 132 1325 13250 132500 1325000 

Fig. 3. The step-by-step development of the DAST code for a given square animal. The label in a 
square denotes the position in the DAST code of the octal digit corresponding to this square. X 
indicates a square already reserved for the later processing 

@ 
1724000 1702400 

Fig. 4. The DAST tuple for another two orientations (90 ° 
and 180 °) of the animal with 7 squares given in Fig. 3 

111110 6 7 I 

1111240 

-t, l , l , l , ] ,  

10 

1111121 4212( 

-t,1213 ,1 
111710010 

4 1 2 ~ 1 2 [ 3  4 

8 3 4 10 ~ 5 

i 7 6 5 9 817 6 

32520200 3112121100 

Fig. 5. Examples of several square-cell 
configurations with their DAST codes 

then without further information the original end of the DAST code can be 
determined. This allows an encoding of sets of independent polyominoes by 
simply concatenating their DAST codes. As an example we give in Fig. 3 the 
step-by-step development, obeying the convention from the above, of the DAST 
code for a square animal with 7 cells. 

The DAST code for the square animal in Fig. 3 is lexicographically the 
smallest of all possible codes for this particular animal. For  example, if we rotate 
clockwise this animal for 90 ° and for 180 °, then the corresponding DAST tuples 
are given by 1724000 and 1702400, respectively (see Fig. 4). 

In Fig. 5 we give several additional examples of  square-cell configurations 
with their DAST code. 

3 The computer program 

The DAST code is the basis of a computer program for generating and thereby 
enumerating all polyominoes with up to a given number of squares. To generate 
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all polyominoes with up to n squares the program virtually counts all tuples with 
up to n octal digits (i.e., values from 0 to 7) in lexicographically ascending order .  
During the counting the program tries to interpret the actual tuple as a DAST 
tuple of a corner-entered polyomino and eliminates it, if  it 

(a) self-terminates before its end (only k - 1 one-bits in the first k digits of the 
tuple) or 

(b) does not self-terminate at its end or 

(c) describes the same square twice or more or 

(d) describes a square as a neighbor from another square but the first one from 
which this would be possible or 

(e) starts from a wrong square (not a corner entrance). 

Actually all these tests and countings can be combined so efficiently that the 
real counting through these tuples leads from one case passing all these tests to 
the next such case in one step of nearly constant CPU time expense. The result 
is sequential delivery of the DAST tuple for every corner-entered polyomino. 
Clearly the DAST codes of all polyominoes are among them. To eliminate all 
others every DAST tuple is simply compared to the DAST code of its poly- 
omino. Thus, the program now delivers sequentially for every polyomino exactly 
once its DAST code at an average rate of about 8 counting steps per hit (8 
orientations, symmetric cases are negligibly rare) but varying extremely from 1 
step to million steps per hit. The overall time expense of  the algorithm is directly 
proportional to the number of all squares in all generated polyominoes. 

The program uses the obvious coordinate system (i.e., the axes originate at 
the center of a square and run parallel to the square edges) in the plane filled 
with squares, such that the square centers are in 1-1 correspondence with the 
pairs of integers representing coordinate values. This allows coding of  each 
square in a finite section of  the plane by a two-dimensional array (see Fig. 6 
where '1' stands for "belongs to polyomino" and '.' for "does not"). 

The generating process uses 4 different states of squares (and thus four values 
in the array): "free", "blocked", "member"  and "reached" (the choice of  these 
values is merely a matter of  taste). The four possible directions of propagation 
to adjacent squares can be seen as index differences (1, 0), (0, 1), ( - 1, 0) and 
(0, - 1 ) .  

We assume the starting (entrance) square (denoted by " S "  in Fig. 7) at 
position (0, 0) in the center of the array (there are also allowed positions of 
squares with negative indices) and a starting direction to be (1, 0). We enforce 
the starting point to be one of the 8 corner entrances by marking "blocked" 
(denoted by " B "  in Fig. 7) all squares at coordinates (k, l) with k = 0, l > 0 
(exactly northern) or k = - 1 ,  l ~< 0 (southwestern). This rails off half of the 
plane (see Fig. 7). 

• 1 • 1 • Fig. 6. An example of a square animal and 
. . . . . .  the corresponding two-dimensional array 
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• B 

• B 

• B 

B • 

B " 

S • 

Fig. 7. An array of squares with the starting square (S) and 
blocked squares (B) 

The starting square is marked as "member",  the remaining squares being 
"free". We push the starting position and direction onto a stack and enter the 
recursive process, which operates as follows: If  the stack is not empty, we take 
position and direction of a member from the stack and make them the current 
ones. We reserve the state of the three neighboring squares of the current one in 
the currently allowed direction (current straightforward direction and 90 ° to the 
left or to the right). Each subset of  free squares among these neighbors (taking 
into account the maximum number of squares required) is considered, one case 
at a time. For  each case we build the corresponding 3-bit binary number and 
insert it as a digit in the code in generation. We mark the neighbors in the subset 
as "members" and the former "free" ones as "blocked" so that they cannot be 
made "members" from another side (which would lead to a code different from 
the DAST code). We push the position and direction of  the new "members" (if  
any) onto the stack such that they can be fitted in the chosen order of directions. 
Then for every case we reenter the recursion. After all cases have been inspected, 
we reset the three neighbors to their reserved state and trace back one recursion 
level. If  the stack is empty, we have completed the generation of the DAST tuple 
of a corner-entered polyomino. 

For  all other 7 orientations we select the right-corner entrance and compute 
the DAST tuple (using suitable index transformations and the two-dimensional 
array in a recursive process like that above but simpler since the only case to 
consider is the maximum subset of members among the three neighboring squres, 
and, using the fourth state "reached" to mark temporarily members which were 
entered or reserved). If  the original tuple is the smallest among the eight, we use 
it further in the generating process as the DAST code of a new polyomino area. 

In order to detect any holes (especially to distinguish polyomino graphs from 
polyomino areas) we transform the DAST code into a boundary description [22]. 
We walk clockwise around every square making up the polyomino. The walk 
begins at the entrance edge. For  this 4n (n = the number of squares in the 
polyomino) walk we eliminate all self-returning subwalks of length 2 (this 
elimination can already be done during the transformation process, i.e., referring 
to Fig. 2 we replace in the walk the part a-b directly by a-d-c-b and not by 
a-b-a-d-c-b). If  the remaining walk contains closed subwalks (or the same vertex 
twice, which is easily determined using a two-dimensional array storing for every 
vertex position in the plane the last edge sequence number ending at this vertex), 
we have a hole (of  size 1, if the sequence numbers differ by 4). If  there are no 
holes, we also obtain a boundary code of the polyomino (not necessarily a 
canonical one). 

We give a block-diagram of the computer program for generation and 
enumeration of square-cell configurations in Fig. 8. 

Though not very suitable for vector processors the program matches ideally 
the possibilities of parallel processing hardware, as one may use as many 
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DAST TUPLE COMPLETE 

INITIALIZE 

SELECT NEXT SUBSET OF 
FREE NEIGHBORS. ADD THEM 

TO BE INSPECTED 
TO THE STACK OF ENTRANCES 

ENTER A NEW RECURSION 
LEVEL TARING THE NEW 

CURRENT ENTRANCE 
PROM THE STACK 

I SELECT NEXT I 
ORIENTATION 

CONSTRUCT DAST TUPLE 
IN THIS ORIENTATION 

DAST CODE FOUND 

1 
MAKE BOUNDARY CODE, CHECK FOR 

HOLES, INCREASE APPROPRIATE 
COUNTERS 

I CHECKPOINT 

LEAVE RECURSION LEVELS AS 
NECESSARY TO FIND A LEVEL 
WHERE NOT ALL SUBSETS OF 

FREE NEIGHBORS HAVE 
BEEN PROCESSED 

N 

PRINT RESULTS I 

275 

Fig. 8. A block-diagram of 
the computer program 
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computers as one wishes at the same time on disjoint intervals of tuple values. 
The only information needed to continue an interrupted generation process is the 
last known tuple produced before the interruption. 

4 Results and discussion 

In Table 1 we give the numbers of square-cell configurations with up to 16 
squares. 

Computations have been carried out on a PC (386-AT, 40 MHz). The CPU 
times needed to complete computations are also reported in the table. The 
smallest polyomino area with a hole (the smallest holey square animal [2]) is a 
configuration with 7 cells which is depicted in Fig. 9. 

T a b l e  1. The number  of  square animals with n cells 

Square animal 

n Simply Multiply connected 
connected 

Single Single Several 
square large large 
hole hole holes 

Total 

Grand cpu time 
total h min 

1 i I 

2 1 1 
3 2 2 
4 5 5 
5 12 12 
6 35 35 
7 107 1 1 108 
8 363 6 6 369 
9 1248 36 1 37 1285 

10 4460 182 13 195 4655 
11 16094 884 95 979 17073 
12 58973 4074 589 4663 63600 
13 217117 18254 3220 21474 238591 
14 805475 80008 16486 2 96496 901971 1 
15 3001127 345415 79997 37 425449 3426576 4 
16 11230003 1474145 374628 479 1849252 13079255 17 

1 
4 

17 
8 

29 
50 

0.33 
0.27 
0.33 
0.33 
0.33 
0.49 
0.94 
2.64 
8.85 

25.16 
7.84 

24.85 
18.42 
13.87 
49.84 

5.00 

9 10 

9 8 

1 7 

2 6 

3 4 5 

214141140 

Fig. 9. The smallest holey square animal and its DAST code 

Fig. 10. The smallest multiply connected square animal with a single hole of  the size of  two 
squares and its DAST code 

7 6 

2 3 4 

2414140 
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9 8 10 9 8 10 11 

1 7 14 ~ 1 7 12 

Y~ 
3 4 B 11 12 3 4 5 14 

21415116001410 21415116012100 

Fig. l l .  Two smallest multiply connected 
square animals with two holes of the size 
of two squares and their DAST codes 

1 1 1 1 1 0  111120  111210  111240  111300  

1 1 1 0 0 0  112120  112140  l 1 2 q l O  112020  

112500  113010  113100  113200  113q00  

l160qO 117000  121120  121140  1212~0  

121300  121420  121300  121600  12~2~0 

124300  125020  125200  132010  132100  

132q00 133000 135000 170200 321200 

Fig. 12. A copy of the computer output containing 
square animals with 6 cells and their DAST codes. 
These animals are ordered according to the 
lexicographically increasing codes 

The smallest polyomino graph with a hole (the smallest multiply connected 
animal with a single large hole, i.e., a hole of the size of two squares) appears in 
the class of square-cell configurations with 9 cells. This square animal is shown 
in Fig. 10. 

There are two smallest polyomino graphs with at least two holes, i.e., two 
smallest multiply connected square animals with two large holes. They appear in 
the class of square-cell configurations with 14 cells. These two 14-square animals 
are given in Fig. 11. 

Our results in Table 1 are in full agreement with several previous computa- 
tions which produce the total number of square animals [2, 11, 16, 23-25]. The 
feature we emphasize in our algorithm is to get every free polyomino exactly 
once, and so we spend most of the CPU time in deciding whether the actual fixed 
polyomino is the right representative for the corresponding free one. This allows 
us to do further operations on all free polyominoes of a given size, e.g., to 
produce graphic output. In Fig. 12 we give as an example a copy of the computer 
output containing the diagrams of 35 square-cell configurations (all square 
animals with 6 cells). 
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